堆排序

算法思路

堆排序(heap sort)是一种基于堆数据结构实现的高效排序算法。我们可以利用已经学过的“建堆操作”和“元素出堆操作”实现堆排序。

  1. 输入数组并建立小顶堆,此时最小元素位于堆顶。
  2. 不断执行出堆操作,依次记录出堆元素,即可得到从小到大排序的序列。

以上方法虽然可行,但需要借助一个额外数组来保存弹出的元素,比较浪费空间。在实际中,我们通常使用一种更加优雅的实现方式。

算法流程

设数组的长度为 n ,堆排序的流程如下图所示。

  1. 输入数组并建立大顶堆。完成后,最大元素位于堆顶。
  2. 将堆顶元素(第一个元素)与堆底元素(最后一个元素)交换。完成交换后,堆的长度减 1 ,已排序元素数量加 1 。
  3. 从堆顶元素开始,从顶到底执行堆化操作(sift down)。完成堆化后,堆的性质得到修复。
  4. 循环执行第 2. 步和第 3. 步。循环 n−1 轮后,即可完成数组排序。

heapSort.gif

算法特性

  • 时间复杂度为 O(nlog⁡n)、非自适应排序:建堆操作使用 O(n) 时间。从堆中提取最大元素的时间复杂度为 O(log⁡n) ,共循环 n−1 轮。
  • 空间复杂度为 O(1)、原地排序:几个指针变量使用 O(1) 空间。元素交换和堆化操作都是在原数组上进行的。
  • 非稳定排序:在交换堆顶元素和堆底元素时,相等元素的相对位置可能发生变化。

代码实现

C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
void siftDown(vector<int> &nums, int n, int i) {
while (true) {
// 判断节点 i, l, r 中值最大的节点,记为 ma
int l = 2 * i + 1;
int r = 2 * i + 2;
int ma = i;
if (l < n && nums[l] > nums[ma])
ma = l;
if (r < n && nums[r] > nums[ma])
ma = r;
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if (ma == i) {
break;
}
// 交换两节点
swap(nums[i], nums[ma]);
// 循环向下堆化
i = ma;
}
}

/* 堆排序 */
void heapSort(vector<int> &nums) {
// 建堆操作:堆化除叶节点以外的其他所有节点
for (int i = nums.size() / 2 - 1; i >= 0; --i) {
siftDown(nums, nums.size(), i);
}
// 从堆中提取最大元素,循环 n-1 轮
for (int i = nums.size() - 1; i > 0; --i) {
// 交换根节点与最右叶节点(交换首元素与尾元素)
swap(nums[0], nums[i]);
// 以根节点为起点,从顶至底进行堆化
siftDown(nums, i, 0);
}
}

Python

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
def sift_down(nums: list[int], n: int, i: int):
"""堆的长度为 n ,从节点 i 开始,从顶至底堆化"""
while True:
# 判断节点 i, l, r 中值最大的节点,记为 ma
l = 2 * i + 1
r = 2 * i + 2
ma = i
if l < n and nums[l] > nums[ma]:
ma = l
if r < n and nums[r] > nums[ma]:
ma = r
# 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if ma == i:
break
# 交换两节点
nums[i], nums[ma] = nums[ma], nums[i]
# 循环向下堆化
i = ma

def heap_sort(nums: list[int]):
"""堆排序"""
# 建堆操作:堆化除叶节点以外的其他所有节点
for i in range(len(nums) // 2 - 1, -1, -1):
sift_down(nums, len(nums), i)
# 从堆中提取最大元素,循环 n-1 轮
for i in range(len(nums) - 1, 0, -1):
# 交换根节点与最右叶节点(交换首元素与尾元素)
nums[0], nums[i] = nums[i], nums[0]
# 以根节点为起点,从顶至底进行堆化
sift_down(nums, i, 0)

Java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
void siftDown(int[] nums, int n, int i) {
while (true) {
// 判断节点 i, l, r 中值最大的节点,记为 ma
int l = 2 * i + 1;
int r = 2 * i + 2;
int ma = i;
if (l < n && nums[l] > nums[ma])
ma = l;
if (r < n && nums[r] > nums[ma])
ma = r;
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if (ma == i)
break;
// 交换两节点
int temp = nums[i];
nums[i] = nums[ma];
nums[ma] = temp;
// 循环向下堆化
i = ma;
}
}

/* 堆排序 */
void heapSort(int[] nums) {
// 建堆操作:堆化除叶节点以外的其他所有节点
for (int i = nums.length / 2 - 1; i >= 0; i--) {
siftDown(nums, nums.length, i);
}
// 从堆中提取最大元素,循环 n-1 轮
for (int i = nums.length - 1; i > 0; i--) {
// 交换根节点与最右叶节点(交换首元素与尾元素)
int tmp = nums[0];
nums[0] = nums[i];
nums[i] = tmp;
// 以根节点为起点,从顶至底进行堆化
siftDown(nums, i, 0);
}
}