快速排序

算法思路

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

快速排序算法通过多次比较和交换来实现排序,其排序流程如下:

1、首先设定一个分界值,通过该分界值将数组分成左右两部分。

2、将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。

3、然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。

4、重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。

概括来说为 挖坑填数 + 分治法

动画展示

quick1.gif

算法性能

时间复杂度

理想情况

如果足够理想,那我们期望每次都把数组都分成平均的两个部分,如果按照这样的理想情况分下去,我们最终能得到一个完全二叉树。如果排序 n 个数字,那么这个树的深度就是quick2.gif

1
2
3
4
5
T(n) ≤ 2T(n/2) + n,T(1) = 0
T(n) ≤ 2(2T(n/4)+n/2) + n = 4T(n/4) + 2n
T(n) ≤ 4(2T(n/8)+n/4) + 2n = 8T(n/8) + 3n
......
T(n) ≤ nT(1) + (log2n)×n = O(nlogn)

最坏情况

而在最坏的情况下,这个树是一个完全的斜树,只有左半边或者右半边。这时候我们的比较次数就变为quick3.gif

空间复杂度

原地排序

原地快排的空间占用是递归造成的栈空间的使用,最好情况下是递归quick41.gif次,所以空间复杂度为quick4.gif,最坏情况下是递归 n-1 次,所以空间复杂度是quick5.gif

非原地排序

对于非原地排序,每次递归都要声明一个总数为 n 的额外空间,所以空间复杂度变为原地排序的 n 倍,即最好情况下quick7.gif,最差情况下quick8.gif

稳定性

不稳定。

代码实现

C++

1
2
3
4
5
6
7
8
9
10
11
void quick_sort(vector<int> &q,int l,int r) {
if (r <= l) return;
int i = l - 1, j = r + 1, x = q[(l + r) >> 1];
while (i < j) {
do i++; while (q[i] < x);
do j--; while (q[j] > x);
if (i < j) swap(q[i], q[j]);
}
quick_sort(q, l, j);
quick_sort(q, j + 1, r);
}

Python

1
2
3
4
5
6
7
8
9
def quick_sort(self, nums: list[int], left: int, right: int):
"""快速排序"""
# 子数组长度为 1 时终止递归
if left >= right:
return
pivot = self.partition(nums, left, right)
# 递归左子数组、右子数组
self.quick_sort(nums, left, pivot - 1)
self.quick_sort(nums, pivot + 1, right)

Java

1
2
3
4
5
6
7
8
9
10
/* 快速排序 */
void quickSort(int[] nums, int left, int right) {
// 子数组长度为 1 时终止递归
if (left >= right)
return;
int pivot = partition(nums, left, right);
// 递归左子数组、右子数组
quickSort(nums, left, pivot - 1);
quickSort(nums, pivot + 1, right);
}